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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 926

THE INFLUENCE OF THEE AERODYNAMIC SPAN, EFFECT ON THE MAGNITUDE
OF THE TORSIONAL-DIVERGENCE VELOCITY AND ON THE SHAPE
OF TEE CORRESPONDING DEFLECTION MODE
By Francis B, Hildebrand and Eric Reissner

' SUMMARY

A procedure which takes into account tlie aerodynamic

span effect is given for the determination of the torsional-_

e

divergence velocities of monoplanes.

The explicit solutions obtgined in several cases
indicate that the aerocdynamic span effect may inecrease
the divergence velocities found by means of the section-
force theory by as much as 17 to 40 percent.

It ig found that the magnitude of the effect in-
creases with increasing degree of stiffness taper and de-
creases with increasing degree of chord taner. L

By a slight &xtension of the present“qgtpod_ighgg
possible to analyze the elastic deformations of wings,
and the resultant 1ift distributions, before torsional
divergence occurs. ’

INTRODUCTION

This paper deals with the limiting case of the bend-
ing—-torsion flutter problem which occurs when the flutter

frequency has the value zero. This aspect of the problem__”_
has been formulated and dealt with, as a Problem of . —

static torsional instability, by H. Reissner (reference
1) in 1926. Reissner's treatment, as well as the later
work on the general flutter problem by Theodorsen (ref-
erence 2), Loring (reference 3), and Bleakney (reference
4), assumes expressions for the relevant air forces at
each section of the wing which correspond to the assump—
tion of two-dimensionagl flow,. :
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The purpose of the present paper - -1s to investigate
the effect of this simplifying assumption by giving a
procedure for the analyegis of the torsional-divergence
problem which takes into. account the aerodynanmlc span
effect. The developments are based on the theory of tor-
sion of straight rods and.on.lifting-line theory for the
spanwise distribution of 1lift.

A rapidly convergent process of iteration is devised
for the solution of the equations of the_.two theories for
an elastically twisted wing, The method is applied to
some typical examples and it is found that for a wing
with an aspect ratio of about six the aerodynamic span

effect modifies the torsional-~divergence velocity cbtained

with the assumption of air forces of the two-dimensional
theory by 17 to 40 percent, depending .on the elastic and
plan—-form characteristics of the wing.

This investigation, conducted at the Massachusettis
Ingtitute of Technology, was sponsored by, and conducted

with financial assistance from, the National Advisory
Committee for Aeronsutics, | . - = e

SYMBOLS

b wing span

e wing. cheord = . . o o S
ecg root chord (c~ ='c/cR)'”

o angle of attack before elastic deformgtion

L engle of twist due t6 elastic deformation

l section 1ift {per unit span)

) density of ai;

v veloclty offlight

m profile constant (dc,/day)

c; section 1lift coefficient <1/%pvac>

4
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F auxiliary 1ift functian (ccz/mcR, 1/%pvzﬂcR>
e distance between center of pressure and elastic _ e
axisg of Wlng : T - s
eR value of e at root "(e* = e/eg)
G modulusg .of rigidity " T T T T
GI torsional rigidity of wing section: -
Ig value of I at root (I* = I/Ip)
S projected wing area . S e
w dimensionless constant (meg/4b) . :
_ . o mR ey bep o
B torsional-divergence parameter|{. /[ — —— —= \'
8G. cr »\/IR !
¥y spanwise coordinate measured from wing root in - . _
uniteg of semisgpan e P S
G,E,g "auxiliary functiodns defined in equations (86)
(87) and (91). :
Y,a "constants defining taper characteristics of wing
’ (equation (16)) . B
va auxiliary variable (1 - ay) )
v,8,A constants defined in equations (20), (21), and (24}
A, B,0 arbitrary constants . - R — .
o weighting coefficient of Simpson's rule
ef corresponding to section-force theory_(as subsoriph)
MATHEMATICAL FORMULATION OF THE PROBLEM
If a2 wing with an. initial angle-of-attack distribu- e
tion' ay(y) is subjected to & .lift distribution 1(y)
per unit span and the resultant air force 1ldy, associ-

ated with a - gpanwise element of the wing acts at a dis- ° Ll

tance

from the elastic axis of the wing, a change of -
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angle ofxmwttack 34 +takxes place due to the torsional flex-
ibility of the wing. (See fig. 6.) The relationship be-
tween the additional angle of attack and the 1lift{ per

unit spen is given approximaetely by the differential
equation

_d gy =]
e e

where ¥ 1is a spanwise coordinate measured from the wing

root in units of half span b/2, e is the distance

between the center of pressure and the elastic axis, and

GI 1g the torsgional rigidity. It is known that this ap~ g
proximate equation neglects the effect of the spanwise _|
varietion of twist on the stresses and deformations of : '
the wing, and that in a more accurate theory eguation (1)

would be replaced by a fourth~order differential equation

for ¢. Since, however, all calculations of the diver-~ )
gence velocity by means of the section-force theory of
which the authors have knowledge are based on eguation
(1) and the main purpose of this paper is the estimation
of- the aerodynamic span effect, it is thought that satie-
factory results may be obtained if the present calcula- ' .
tions also are based on this equation, It may be stated

that there are no essential :difficulties.in extending the

work of this paper in the direction of refined procedures -
for the determination of the elastic deformations,.

= - e(y) 1(y) (1)

An additional relationship is afforded by the 1ifting-

line integral equaiion
1

_ 1 2 - 1 é'_}. ___d.n
Wy) = mc(y)-{gﬁv (0o + 8) - 7% dn y-n %2)

1

where ¢ 1ig the chord of the wing, p 1is the density of
air, V is the velocity of flight, and m 18 & profile
constant. The notation ¢ is used in eguation (2) to B -
indicate that the CTauchy principal value of the integral

is t0 be taken, according to the definition

1 AY € ) 1 .
Jﬂ = li%) {‘/ +
‘ € —= . .
J—l 1 “rte
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If an auxiliary 1ift function F(y) is defined as

.

Fly) = —) = e@) o (y) (3)

%pvam CR m ¢y _ —-

where c;(y) ig the conventional section~lift coeffl-
cient, equations (1) and (2) can be written in the form

—QL-[I*(y)iﬁ£]+ 8% e*(y) F(y) = © (4)
.4y dy : -

1 L _ e -

\ F) L w f 8T AN _ o (y) + aly)  (s)

c*(y) (LI dn y=n . . . .

where i is a dimensionless parameter

m cp . , : T
= - : (6)
o 4 b ' 6)

and Bz ig defined by the relaticnship

. 2 . . . s
GIgp° = %pvam <%> ep cg - A7)

In these equations c¢p represents the root _chord whils
¢*(y) 1is the ratio of the chord to the root chorgd,

enly) = cly) B - f 
cp . ,

and analogous definitions apply to ey, e*, Ip and IX*.

If the wing is restrained from twisting at the roo}l
(y 2= 0), and no end twisting moments are applied, the -
boundary conditions for the function ¢ are
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${0)

[1 as
iy - =£4

while vanishing of the lift 2t the wing tips leade to the
boundary conditions : ’ -

I
(o)

(8)

]
o

F(x1) = O (9)

The determination of continuous funetions F and
4 gatiefying the simultaneous equations (4) and (5),
together with the boundary conditions of equations (8)
and (9), constitutes the basic problem of torsionel di-
vergsnce. It—should be remarked thdt unless ¢ 1g an
odd function of y the three -boundary conditione of
equation (8) do not,in general,permit a regular solution
for 9, The physical explanatlon of this occurrence lilen
in the fact that unless the wing loading is antlsymmet-
rical with respect to the wing root—thg restraint offered
by the fuselage, in this formulation of the pradblem, 1le
equivalent to a concentrated twisting moment, ao that

S _ ) _ .
the function I %—- muest have a discontinuity at the

. ¥y . - - --
root (y = 0). Also, since it is necessary that the
function F(y) have a continuous derivative at inte-
rior points of the span-in order that the left-hand side
of equation (5) be continuous, it follows that the func-
tion : -

1

B [ 4F an _
™ én y-m

-1

which represents the- so-called "induced angle of attack"
must have a diacontl“uous first derivative at the wing
root,

Eqiations (4) and (6) can be combined into a single
integro-differential equation by the elimination of the
function ¥. Thus, if egquation (4] is intecgrated twice
and the boundary conditions of equation (8) are imposed,
an expression for 4 can be determined in the form

b ]
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1

4(y) = BZL/F e¢(y,n)ex(n)F(n)dan’ - (10)

-1 - e — [

where the function G depénds upon the functlon "I¥, and
the introduction of equation (20) into equatlon (5) gives
the form : . : _

1

1 e B
(y) Ef' dr 4an _ g® /C(v n)e*(n)F(ﬁ)dﬂ=%(y) fll)

c*(y) T an y-n E o

-1

If the function a5, is not identically zero, equa-

tion (11), together with the boundary conditions of equa-~
tion (2), possesses, in general, & unique solution %

It ig known, however, that there exists an inflnite set
of eritical values of the parameter $ for which no
solution to equation (11) exists. In addition, as B
approaches one of these critical values, the magnitude of
the corresponding functions F(y) gnd #(y) increases
without limit. Since B 1is proportional to the veloclty
of flight, the c¢ritical values of B correspond to crit-
ical velocities at which a very' large (theoretically in-~
finite) twisting force is experienced by the wing. Thus
an accurate determination of the smallest critical valus

of B is desirable for purposes of structural wing de- R

sign. The value of V cerresponding to the smallest
eritical valuesof B is designated as the torsional-
divergenqe velpgity.

According to the theory of integro-~-differential equa-
tions the critical values of B for which no - solution to
equation (11) exists are identical with the values of. .8
for which the homogeneous equation, with o4 1dentica11y

zero, possesses a solution. That is, a critical value of
B corresponds %0 such a critical velocity of flight ﬁhat -
an initially untwisted airfoil (ay,-z O) may become de-

formed. In the present linearized theory the magnitude

of the .defleoction in this case is of undetermined magni-
tude beocause. 0f the homogeneity of equation (11) when
a, = 0. :

-J-'..— ..

z&ﬁ/nfev1ous explicit determina.j,, of the critical

value f the parameter P - were based ., the so-called
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"section-force theory," which disregards the merodynamic
effect of finite gpan dPy neglecting the integral repre-
senting the induced angle-of attack in equation (5) (ref-
erence 1), In what follows,a brief treatment of the
section-force procedure is first given, after which a
method of successive approximation is presented for the
determination. of the torsional-divergence flight veloc-
ity and of the form-of the corresponding déeflection and’
1if% curves, according to.the lifting-line theory of
‘equations (4) and (5). Since the magnitude of the
torsional-divergence velocity is independent. of the ini-
tial angle~of-attack ‘distribution, it will be assumed’
%ha% ghe wing is initlally at a zero angle of attack -
a, (y) =

SOLUTION OF THE PROBLEM ACCORDING TO SEGTIONeFOQQE THEORY

If the integral in equation (H) is neglected and an
initial zero angle of attack is assumed, equations (4)
and (5) become - o .

2

. [I'*(y) ﬂ] + 8%er(y)F(y) = 0 (12
dy dy - . : .
F(y) = on{y)}e(y) ' . (13)

These equwationsg, together with the boundary conditions
- . ’ -~
o 8(0) =0

> O (14)

- 4d ) .
[I E"‘] to = 0
¥y y'=-d:1 . T

-t

are taken as the basis of the analysis of the problem of
torsional divergence according to the section~force the-_
ory. The boundary conditions of equation (9) are not
pPrescribed in this theory.

Introducing equation '(13) into equation (12) leads
to a homogeneous differentisl equation in &
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L [I*(y) %%] s BPe*(y)e*(y)oly) = O © (15)

which together with the homogeneous boundary conditions

of equation (14) ig sufficient to determine the critical
values of the parameter B &and the corresponding critical
deflectiorn modes.’ (See reference 1.) . :

A Class of Explicit Solutions

The integration of equation (15) in closed form is
possible, -in particular, in cases when the .chord and
section stiffness vary amccording to the laws

'Yl
(1 - ay)
o 4 . (18)
a - ay)YQJ{ |

where %Y, and’ Yz are arbitrary positive constante and
a 41s a positive constant less than unity. With the sub- .
stitution "

-

e*(y) = e*(y)

1™ (y)

1L ~ay =y, : (17)
, | .
equation (15) becomes
s T Ya da < ) &y, o .
B v = 0 . (18)
dv Lyl J y

and if

Yo # 2 (Y, + 1)

the solution is known to be of the form -

1_—-'\,.2 .
8(y) = ¥, 7 (5 Sylvs> (19)

¥
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where ; u__is the general Bessel function of order Vv
and ’

vV o= . - . (20}
2Y, ~ Yg + 2°

and .

§ = ——— (21)

In the special cases when
Yo = 2 (v, + 1) (22)
the solution can be expresged in the form

Y q+2 ’
S(y)=y, = 2 '{-Asin (Nlogy,)+ Beos (Alogyﬂ} (23)

’where A and B are arbitrary constante and
; B\E  (8Yy + 1Y -
A= ﬂ—) —<“—‘_‘—‘ (24)
a . 2 .

The solution is evaluated explicitly in the follow-
ing four .cases! L ) A

1, Uniform chord, uniform etiffness (Y, = Y5 = 0).~
In this case eguation (15) becomes i -

a°s

=]
dy

+ %8 =0 (25)

and the general continuous solution having continuous
derivatives except at ¥ = 0. 1g of the form

4(y) = A sin Blyt + B gin By + C cos By - (26)
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where the first term has a discontinuous derivative at the
root. The boundary conditions of equation (14) require
that

C = 0 - (27)
and : :

cos 6 = 0 . (28)

Equation (28) indicates that equations (28) and (14)
possess solutions only wheén e e

B = (2n +2l.) T - ] ) (29)

where n is an integer. The smallest of these values, -
B = w/2, +then corresponds to the torsional-divergence

velogity, and the corresponding deflection mode is of the

form. . . - .

. : 8(y) = A gin Slyl + B gin By L. (30)

where A and 3B are afbitnary constants. A - L

Equation (30) shows that this mode may have both
symmetrical and antisymmetrical components, so that ac-—
cording to thls theory the two halves of the wing deflect
independently of each other. Movreover, ac¢cording to the
section-force theory the symmeilrical and gniisymmetrical -
deflection modes cerrespond to ithe same ¢ritical flight
veloclity. For this reasdn it wiil be convenient in this
section to consider only one-half of the wing. The solu-
tion of ,the problem for the first deflection mode then

can be written in the form - R

YE

B =

F(y) = 8(y) = & sin

a4

J

2. Uniform chord, aquadratically decreasing stiffness B
(¥, =0, Y3 = 28).~ If only one-half of the wing is con- -

sidered, the general solution of eauation (18) is obtalned
from equation (23) in the form (see also reference 1)



12 - -NACA Technlcal Hote ¥Wo. 926

6(y)'=;7%? {A sin (N log y;) + B ocog (A log yli} -(32)

yi =1 - ay . (17)

- (33)

The boundary conditions of equation (14) then require
that : . . .
B =0 (34)
and

- tan [A'log - a)} PN o (36)

Equation (35) has an infinite number of solutions which
in conjunction with ecuation (33) determine the critiocel
values of B for which a solution.to the problem exists,
A numerical evaluation of the solution is presented for
two degrees of taper:

. tip stiffness 1 1-
(a) P - ="'-<a=-—->
) root gatiffness 4 : K

In this case the smallest root of equation (35), which
becomes : .

tan (A log 2) + 2A = 0

ie found by a conventional method of successive approxi-
matione to be

N = 2,546

and equation (33) then gives the corresponding critical
value of B,

g = 1.297

- z . T
The first mode of deflection for one-half the wing is
thus described by the equationas -
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-~

B = 1,297
v (36)
TF(y) = 8{y) = 4 8in [2.546 log (1'“%Y>]
1 . .
1~
Ey | -
() tip stiffnesa 1 _5
ro6t stiffness = 36 < )

For this case, which was evaluated in reference l the
solution for the ‘firest mode is obtained in the form

-
B = 1,016 - .
' v (37)
F(y) = 8(y) = _r gin [1.112' log <1—~-2-y>:l
67 ~

3. Linear chord;, quadratically decreasing stiffness
(¥, =1, Yp.= 2).~ The solution of equatton (15) 1is given
Py equation (19) where p==<1/2. -and " 8§ = 1, ‘The Bessel
functions of order *1/2 are expreseible in terms of the

elrcular functions, so that the general solutlon of equa-~
tion (15) can :be written 'in the form . -

1 o 2 E).
3(y) = V1 (A gsin % T2 + B cos 2 T2 (38)

'If the boundary condition 4 (0)

0 is imposed, it fol-

lews theaet . 2
‘ 8(y) = = sin & (1 - y,) = —2 _ sin By (39)

¥a P . 1l -~ ay

The boundary condition $7(1) = 0 determines the critical
values of B as the roots of the eguation
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tan B + L= & g = 0O ~ (40)
a

Equations (13) and (39) determine the auxiliary 1ift
function. F in the form

F(y) = A sin By (41)

In particular, if a = 1/2, so that the tip chord is
one-half the root chord and the tip stiffness is one-
fourth the root stiffness, the first deflection mode oOf
half the wirg is described by the equations

-

!

F(y) = A gin 2.029 y . (a2)

B = 2,029

3(y) = —H——atn 2,029 y
1l - EX4 J

4, Linear chord, quartically decreasing stiffness
(Y, = 1, Y = 4).~ The solution of equation (15) 1s given
by equation (23) in the form _ '

1) = {4 612,00 206 320 + 3 Gos (3 106 y1>} (13)

where 5
A = <£{) -
&

while the boundary conditions of equation (14} are satis-
fied if

(44)

S

B = 0 ' : : 245)

and the parameter A 18 a solution of the equation

tan [A log (1 - a)] = % A ,. (46)
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In the case
half the root
the root stiffness’,
the first deflectionh mode

‘a .=

B

F(y) = ___JL_I_
1 - =
5 Yy

8(y) =

A

1 &7
1 - = )72
( 2 ¥)

1/2,
chord and the tip stiffness '{s one-gixteenth
the following data are obtained for

sin [2.946 log (l -

sin [2.946 log (l

. 926 15
where the tip chord is one-
of half the wing: } -

1,658 . "

(47)

'mpA

1
L] o
N
Lmd
| .

Solution by & Method of Successive Approximations.

The determination of
the parameter B8
and 9
solution of eguation (15)
ocbtained, is conveniently
successive approximations
with the names of Stedola

A convenient .function

and .of the corresponding functions F _
from equations {(12) and (13},

the smallest critical valus of

in cases when the
in closed form is not readily
acconplished by a method of
similar to a method associated
and Vianello. '

9,(y) 1is first chosen in

such a way that it satisfies the boundary conditions of
equation (14). A function TF,(y) is then determined by
introducing thls function 1nto equation (13),

F,o(y) = o*(y) 8, (y) ‘Sé@?

If the function ¥, 1is 1ntroduced into equation (12),
the resultant equation

dy dy

can be solved for ¥ Dby direct integration. Suppose _
that the solution of thi= equation satisfying the bound-
ary conditions of equation (14) is given Dby

- B2ex(y) Py (¥) (49)
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T : . a .
vi(y) = B pa(y) SR (50)

If &§,(y) were the exact solution of the problem corre-

sponding to & critical value of B, 1t would be possible
tc choose P so that the functions 4, and 4, are

identical. When this is not the case, an approximation
to the desired critical value of B can be determined if
it ie required that the functlions 9, ~and 7§, -agree as

well as possible over the intefval Iyl < 1. This defer-
mination is usually accomplished by requiring that the
two functions coincide at a sultably ohosen point ¥ = ¥4,

80 that a‘first-épproximgtipp to B is given by

= 17:1.(3’0)

B w:(Yo) (51)

1

A more accurate procedure propocsed here consists in re-~
guiring that the integrel, over the span, of the differ-
ence between the functions $, and J,  vanish, so that

e first approfimation to £ is given by

1
J %, (y) ay
2_ =

By, =

X (52)
J oy (y) dy

If a.convenient multiple of d,(y) 1is treated as a

second approximation, #8z(y), the process can now be re-
peated indefinitely, and 1%t can be shown that the limit-
ing .value : )

e ) 4 '
6% = 11p T ¥l ¥
n—s o f1
L1 eply) ay

-3
gives the. smallest critical_value of B while the limit~
ing function : :
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3(y) = 1im ¢ (y)

D> . '_ -

represents the corregponding twisting mode of the wing.
Since the amplitude of the function ¢ 1s indeterminate
within the framework of the linear theory, i1t is conven-
ient at the beginning of each cycle to magnify the ap-"
proximation §,., &glven by the preceding cyc¢le so that

the initial approximatien 4, in each cycle has a maxi-
mum amplitude of unity. ’

Rapid convergence of the process has been found if
the initiel approximation 4,(y) 1is defined as a suita-
ble multiple of the solution of equation (12) correspend-

ing t0o a uniform digtribution of 1lift along the span, §6
that .

. [1 (y ) Ei—] = (const.) x e*(y) (53)
dy 4y .

_ Asg an illustration of thia procedure, the epecial
case of a uniform wing for which

cr(y) = ex(y) = I'(y) =1 (54)

is analyzed. As before, it is suffiecient to consider only
one-half the wing. The initial approximation to § is
determined by replacing F(y) by a constant in equation
(12), so that . o . .
a9,
2

= constant : (55)
dy -

The solution of this equation satisfying the conditions

3(0) = #1(1) = 0 | o (56)

is found to be

4, (y) = (8onst.) X <y —-% y2> - (87) '
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The constant is arbitrary and is conveniently chosgen so
that 9;(1) = 1, It then folloews that

3,(y) = 2y = y® (58)
From equation (48) there.follows
Py(y) = 8,(y) = 2y - ¥° (63)

‘and the introduction of F,(y) into equation (49) yirlds
the eguatlon -
2=

a3,

3

2, =2 . _

B (y = =y) (60)
dy ' o s
Integrating equation (60) twice and imposing the boundary

conditions of equatlon (66), the function &, is doter-
mined as -

My)=5< -%—M——l—y“) (61)

The condition

1. |

J/ 3, (y) dy =_][ 3}(32 iy -(52)

o] . Q

then gilves the first approximation to the critical value

of B,
2 ' i
By = 2.5 %
b (63)
p, = 1.5811 | - '
which differs from the exact value, B = %-: 1.5708, by

0.65 percent.

L
If the cycle is repeated, starting with the initial
approximation
Bty ) 4 .
do(y) = = = —-(av - 43 + y") (64)
) °
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it is found that

3 a= (16 . 4 3 1 .5 1 6
= =2 PR + — ———
3aly) = B <25 ¥ =187 25 ¥ T.150 7 ) - (e5)

and the conditioni 1

J/q 45 (y) dy'=‘/P 9x(y) ay (66)

o 0
gives a second approximation to B8,

2 42 ' A
s> =I5 |
: (67)
B = 1.6718 | ’

which differs from the exact vslue by less than 0,07 per-
cent.

Since the initial assumption for 34 1in each cycle
was 80 defined that its maximum value (at y = 1) is unity,
an estimate of the rate of convergence is afforded by
comparing with unity the maximum values of the approxi-
mations 9§, obtained after successive cycles. Thus, in

the present example, equations (61) and (63) give

— 5 5
= — —_— = ,042
$.(1) = 3 X 35 =1

and equations (65) and (67) give

— 42 61
85(1) =77 X 750 = 1.008

If the successive spproximations to B . were deter-
mined by the conditions

. sn(l) = ﬁn(l) = 1 (68)

in place of the integral conditions used here, the values

~
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B, = 1.5492!
> (69)
By = 1.65681 [_.

which differ from the exact value by 1.38 percent and
0.17 percent, respectively, would be obtained.

A further illuetration of the advantage of the in-
tegral condition (equation (52)) over the condition
usually imposed (equation (51)) is afforded by a con-
sideration of the fourth case treated in the earlier part
of this section (equation (47)). In this case the ini-
tial approximation to ¢ is of the form ) ’

81(y) = - TGy - By, ° + 2) | (70)
where _
Y = l~%y (71)

and, using equation (48), eauation (49} becomes

dya dv,

If equation (72) 1s solved, subject to0o the boundary con-
ditiong of equation (56), and the result, together with

equation (70), is introduced into equation (62) the first
approximation to B is obtained as

B, = 1.664 (73)

This value differs from the exact value B = 1,653 given
in eauation (47) by about 0.66 percent. If, in place of
eguation (62), the equation : S .

9,(1) =1 o (74)
is used for the determination of B, an approximatlon

B, = 1.612 (75)

is obtmined which differs from the exact value by about
2,48 percent.

a [y: avl] =_% Ba-(y;q 34 QY{QQ (73)
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PROCEDURE FOR SOLUTION Of THE PROBLEM ACCORDING

TO LIFTING-~LINE THEORY

While a direct treatment of equation (11) by approx-
imate methods is possible, it is more convenient, partic-
ularly.in dealing with the critical deflection modes, to
work with equations (4) and (5) and to proceed by a meth-
od of successive approximations similar to the procedure
given 1n the preceding section, According-%0 the lifting-
line theory the symmetrical and antisymmetrical deflection
modes correspond, ‘in general, to different critical flight
velocities. In what follows, the treatment is- restricted
to the symmetrical case and treatment of the antisymmetri-
cal case 1s left for future work. Attention then mey be
restricted as before to one-half the span (0< y < 1),
Also, as in the preceding section, it is assumed that the
wings considered are initially at a zero angle of attack.

Starting with an initial assumption &,(y), deter—
mined as before as the deflection corresponding to a uni-
form distribution of 1ift along the span, gccording teo
the differential equation .

a dd,-
= | I* — | = L) x e* (76
iy [ (¥) iy J = (const.) e*(y) | )
and the boundary conditions 31(0) = I=(1) 8,'(1) = 0,

a function F,(y) ie next defined by equation (5),.

L

Fily) . B 4%, 87 L 9. (y) o (77)
e*(y) 1 ) dn y-m

and the boundary conditions
Fi(x1l) = O (78)

An approximate solution of this equation is conveniently
obtained by a procedure given in reference 5; wherein an
approximation to F,(y) is assumed in.the form .
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. - —. 3 .
P, (y) = Byg-log ii;_éi;__ ;ﬂ y2o. N - 5® (79)

9]

and the parameters 3B, Agy,e . ., Ag are determined by a

method of least squares. - The first term of the approxi—

mation of equation (79) is included since, &g is shown in
reference 5, the .contribution of that term to the induced
angles of attack has the required discontinuity in 1its
first derivative at the root  (y = 0),

If the function F,(y) determined from equation
(77) is introduced into equation (4), the resultant equa-
tion .

subject to the boundary conditions of equation (8) can be
gsolved for ﬁl by ‘direct integration, after which the
first approximation By +to the ceritical value of B 1is
determined as bhefore by the condition

1 1

f ¥,(y) ay =f 8, (y) ay (81)

[e] O

A check on the accuracy of this approximation can be

had by comparing the maximum values of-the functions v,

and $,. Thus if &, 4is chogen in such a way that

$4,(1) = 1 (82)

the degree of approximation attained is indicated by the
closeness of the approximation

,0) =1 | (83)

If necesrary, ‘the process can be repeated indefi- .
nitely. However, in all the problems considered in this
paper satisfactory resulte are sfforded by a single cycle
of operationa. That is, the initial approximation ¢,
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determined from equation (76) is sufficiently similar to
the exact deflection mode that if the condition of egqua-
tion (81) is satisfied, the two functions 4, and &,
agree closely over the entire span.

In case only a first approximation 1s required, the

1

value of the integral J/n ¥,(y) 4y which is needed in
“o
the determination of B, can be folnd without explicitly

determining the function 8,(y). If equation (4) is
integrated twice and the boundary conditions

$(0) = 17(1) 8'(1) = 0 "(84)
are satisfied, the resultant expression for ¢ can be
written in the form :

1 A
3(y) = Bab/n G(y,n) e*(n) F(n) an . (85)

o)
where the Green's function & . is defined by the equatlons

I\

g(n) 0<Sn<y ot

G(y,m) =. _ _ | (86)
Le) vy Snst o

d- e e— —
an v

- dn ' T
(y) =y/p - = - (87)
,g_y -O I*(T\) - . .

It then follows from equation (85) that

1 1 1 o ST ) T
‘/P 5, (y) ay = 52\/q JPJ/QG(y,h) dy> e*(n) Fy(n) an (sg8)
“o o }'o ! - n”:*le-

—

and since
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1 n - ) 1
-/P G(y,n) ay =J/n g(y) ay + g(__n)‘/n dy
'.o .O "Y']
T
=/ (L - ¢) g' () at
S
m C
- 1-f
'/' ) - (89)

o
equation (88) can be written in the form

1

1 .
d/n 3, (y) ay = B?u/n H(y) e*(y) F,(y) dy (90)

o] o)

wheres . ¥y

H(y) =/ 2D an | (91)
* I°(n)

[o]

If equation (90) is introduced into equation (81),
the relatlionship determining the first approximation %o
B ocan be written in the form

5 fl $,(y) ay
By = ———2 (92)

1
fo H(y) e*(y) Fy(y) 4y

Bquation (83), which afferds a check on the accuracy
obtained, can algo be expressed in terms of the functlon
31 if it is noticed that, from equation (85),

1

o, (1) Bf/ ¢(1,n) ex(n) F,(n). dn

’

0

i

1

Bf:/— g{n) ex(n) Fy(n) an (93)

¢}



NACA Technical Note, No, 926 - - 26

Thus equation (83) can be written in the form

I

=1 1 (&)

— A : 5 -
$,(1) = Ba‘j/ gly) ex(y) F,(y) ay
. L4 o - . . . . .

where the function g -is defined Dby equatioh.(87)-
The procedure for obtaining a first approximation

to the smallest critical value of B corresponding to a
symmetrical deflection mode car bé summarized as follows:

(1) Determine ¥,(y) from equation (76) and the
boundary conditions #,(0) = I'(1) 8{(1) =.0, and deter-
mine the multiplicative constant so that ¢,(1) = 0.

(2) Determine F,(y) from equation (?77) and the
boundary conditions PF,(xl) = 0 by the procedure of
reference 5.

(3) Determine B, from eguation (92). A _check on

the accuracy of the determinatlon is pr0v1ded by equatlon
(94).

If greater accuracy 1s desired, the function 3 (y)
is next determinkd from eguation (80) and the boundary.
conditions ¥,(0) = I"(1) ¥,'(1) = 0. A function $;3(y)

is then defined as

o) vy (y)
Y28y ) = %:?I; -

so that #5(1l) = 1, the corresponding function Faply) is
determined as in step (2) of the preceding paragraph, and

? second approxlmatlon o B 1is determined as in step -
). o SRR

It may be remarked thet the entire process can be

carried out conveniently by numerical or mechanical meth- |

ods. .If the solution of equation (?7) is found by the .:

procedure of reference 5, valuwues of thé initial approximaf'

tion &, . and of-the-chord function c¢*™ are. needed only ~
at nine equally spaced points along the semispan.  The
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valueg of the function F,; at the same nine points are
then determined from the data presented in reference S5 by
a purely numerical procedure requiring less than two hours
of time. If the values of the funetions &*, H, and g
are tabulated at these points, the integrals needed in
equations (92) ,andw{94) can be readily evaluated by
Simpson's rule, modified if necessary so as to take into
account the faect that the function F,(y) has an infi-
nite derivative at the wing tip (y = 1). 1If the approx-
imation of equation (79) is used, such.a modified formula,
derived in the appendix, is of the form

1

L/p p(y) Foly) ay = ;ihdk p(xp) Fylxg)

o] k=o

where ¥y = k/8 and O0p 1is the Simpson's~rule weighting
coefficient associated with the point ¥

1 4 3 . 4 27}
c 2 —— = e— B oe— . O 3 —— e} 5 e
o =37 91 %3z 927 33 5 2 32 4 T 32 L
' - : (g96)
4
_ 4 _ 2 : 4 vt _ 1 I
s =557 e =35 % T35 %8 T 21 !

The last term of equation (95) gives the correction due
to the fact that F,(y) has.an infinite derivative at
the point y = 1. '

LIFTING-LINE ANALYSIS OF EXPLICIT CASES

In order to illustrate the procedure of the preced-
ing section. and to investigate the importance of the
aerodynamic span--effect, the cases analyzed in a preced-
ing section agcording to the section-force theory are now’
reconsidered on the basis of the lifting-line theory.
Since only symmetrical deflections are to be treated,
attention will be restricted to one-half the wing.

_ : B
+ 0.00506-{? + }:A}n}-@(i) (95)
n=o’
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“In the numerical caleﬁlatiqne it. 1s eassumed that

'-L:—'—":_ -_ (9.7)

For an untapered wing this value of B corresponds to an
aspect ratio. . . N . et

-m (=8). -  (s8)

ofo

whlle for the general case the correspondlng aspect ratlo

b /S where S is the progected w1ng area, is glven hy

3 e
L e a — - - (99)
S I, e*(y) dy |

=

In partlcular, for a symmetrical wing with llnearly
tapering chord, ’

c*'(-y) - cly) _; _ a lv’ | | (i.oﬂo)

it fol;ows that

. .b_.. ::-'_— ._ml—'—'—-_ L .‘ R _-(101)
S 71 - ==&

It should be remarked that the calculatlona contained
in this section were made by retaining a larger number of
significant figures than are included in the data presented
Thus if the calculations are repeated on the basis of the
tabulated data, the results may differ slightly from the
results glven here,

-~ - b e . - . -= -

1. Uniform chord, uniform stiffness (c*=e¥=1"=1).

The auxiliary functions H and g .are determined from
equations (91) and (87) in the form
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H(y) = y ~ -Js-ya ' (102)
and

ely) =y . - (108)

As in a preceding section, the initial approximation ®,
to the first symmetrical mode (for O X y £ 1) is deter-
mined from equation (76) as

4,(y) = 2y ~ y® (104)

Next the function F, is to be determined from equation
(77} which becomes

arF :
Foly) + = 18N | ooy - yR (108)
dne/_, dm y-n

1f the approximation of equation (79) is assumed, the pro-
cedure of reference 5 determines the constants as follows:

B=0,4298 Ag=0,2680 Ay =1.2950

(1086)

A.4=-2.3442 A.6=1.8286

The data needed for the computation of B, according %o
squation (92) and for the check calenlation of equation
(94) are listed in table 2(a). Thus, according to equa-
tion (92), the quantity PB,° is the ratio of two integrals
of which the first is obtained by Simpson's rule as the
weighted sum of entries in the fourth column:

1 8

k/p 3,(y) ay ® zz o, 9,(y),) = 0.6667 (107)
[ o k=° - - - —_— -
and the second is obtained in virtue of equation (95) as
the sum of weighted products of corresponding entries in
the second and fifth columns, plus a-correction term:
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1 - . . . - e -.'.‘._s.. e e N . L e PR - _" T . - T TTE e
d/ﬂ H(y) F1(y) dﬁ'é{~§3"?é BE(yy )" ®a%5m) =70 0 T
Y% . ... k=o | o e
+ (0,00508)(1.4773)(0.5000) = 0.1654 " ~ (108)

Equation (92) then giwves

. b

LBy S = 4.032 e e

B, = 2,008

Tn the same way, the integral contained in equation (94)
ig evaluated as the sum of weighted producis of corre-
sponding entries in the third and fifth columns of table
Y(a), plus a correction term: ' o

1 g _ .
8 - . B . o . .. -
/- g(Y) Fl(y) dY “Z' Uk g(yk) Fl. (yk) .
° k=0 LTI i
+ (0,00506)(1.4773)(1.0000) = 0.2479 .  (110)
Equation (94) then gives
' T 3,(1) = 0.9994 -+ . -+ .. (111)

(¥hile in the present ceasge. the integrals in equations

(ro7), (108), and (110) can esasily be evaluated directly,
the numerical method of evdluation Jjust outlined is par-
ticularly convenient in case the integrands have compli-

cated analytical expresp}ons,p;'grg_gsﬁepgipp§igraphipa;;y})

Since equation (92) requires that the integral of
the difference between. the successive approximations é}

and ¥; %be zero and equation (111) shows that the two

curves agree almost exactly.at the tip and, further,
gsince both funo;ions-van;sh at the root gnd havs zero
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slope at the tip, it would appear that the agreement be- .
tween the two functions over the span is such that the
process need not bHe continued. The functions 4, and '

F, would then be congidered as the deflection and 1lift

modes corresponding to the critical value B, given in
equation (109),

In order %0 verify the accuracy of this ampproxima-
tion the second approximation is now determined. The
function 9;(y) is obtained from equation (80) by direct
integration and is tabulated in the sixth column of table
1(a). If the values of this function are divided by tho
value of the function at the tip, the corresponding values
of the function d3(y) = 9,(y)/8,(1) are obtained and
listed in table 1(b). The parameters specifying the
function Fz(y) which satisfies the equation

Fa

= 95 (y) ’ (112)
[ an y-n .

are then found Py the procedure of reference 5 as fol- '
lows:

1,4074

(113) .
A, = -2,4319 A, = 1.8538 -

B = 0,3884 A, = 0.2624 A

i

The values of the function F, are presented in table
1{(b). -From-equation (92) the second approximation to 8

is found
. o .
33 = 4.0231 . .
\ L . (114)
By = B.OOGJ
and equation (94) gives the result S .o
t .. .
35(1) = 1,0008 (115)

For final comparison, the values of the function Ea(y),

determined from F3(y) by an equation analogous to .
equation (80), are included in table 1(b).
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It may be said that, contrary to expectations, a less
rapid -rate of convergence of the iterative process occursg
if, instead of taking as the initial approximation-to the
defloction mode the solution of equation (76), the solu-.
.5ion of the problem accorditg to the gection-force theory
is taken as the initial approximation. The results of a
calculation based on this procedure, with - -

8,(y) =8 _.(y) = sin Ty © (118)

are presented in table 1{c). While the value obtained
for B,, . .

B, = 2.004 (117)

and the values of the function 9,(y) agree closely with

the preceding results, appreciable differences are pres-
ent between the successive approximations 9, and- T,

in this procedure. An indication of the fact that the .
function given in equation (116) does not afford an ac-
curate approximation o the zctual critical deflectlon
mode would be afforded, without a complete explicit eval-

uation of the function 51, _by the readlly calculated
value of 9,(1) for this solution,

3,(1) = 0.9582 ' - (118)

From these results three useful conclusions, which
will be further substantiated in the follewing treatment,
‘may be drawn: .

(1) The approximate deflection mode determined as

the solution of eguation (76) is more nearly in agreement

with itk: actzl m'ﬂe than is the moae p*edlrted by the

sc?cianmfsn:- uh=>-v. i S

(2) The preseai msthod of ena]ysié'igfhd% E1gh1y 

sensitive to the cholice of 4%u:s ir-tial anprcrimatian to

the deflection mode as regards the determinatlon of the

first approxlmation to the critical value of B.
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(3) If B, 1ig determined by eauation (93) the degzee

of approximation attained in equation (94) affords a

reasonably accurate estimate of the agreement between the
initial approximation ¥, and the actual deflection mode.

If the results presented in equations (31) and (114)
are compared,.it is seen that the aercdynamlc span effect
is respon51ble for an increase of about 28 percent in the
predicted value of the torsional-divergence velocity. In
figure 1 there is presented a comparison of the successive
approximations ¢,, 95, and 4, to the deflection mode,

and of the successive approximations ¥, and ¥z to the
corresponding lift-distribution function, The mode

do¢ = Fgp = ein % y predicted by the section-forcs theory
ig also included.

2. Uniform chord, quadratically decreasing stiffness

, . 3 :
[o* = g¥ = 1, (L - ay) ] .~ The functions ¢,, H,

and g are obtalned from equetions (76), (91) and (87)°
in the form

$,(y) = 2 log == - (1 - a) (3; - #51(119)
log (-}_——%—;) - a Ya ¥ f
E(y) = f; ;og ?: - (1 - a)(ﬁ? - 1) -(120)
_1Ja .
etv) = 2 {Z -2} | (121)

where y, = 1 - ay. These functions, together with the

function ¥F,(y) determined from eguation (77), are eval-
wated for a = 1/2 in table 2(a) and for a = 5/6 in
tadle 2(b). ' ‘

The ‘integrals contained in equation (92) are eval-~-
uated_by the numerical method employed in the preceding
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case and eqguation (92) gives, for a = 1/2,: - -
_ . : L - o oL _ .
- S : ' (122)
B, = l.?QBJ
and, for a = 5/6, _ _
‘2 L .
g, = 2. oov‘\ o -
(123)
B, = 1. 417 | SRR

From equation (94). there follows, for a = 1/2,

« -

%, (1)

0.9973 | - (124)

and, for a = 5/6,

§,(1) = 0,9877 . (125)

Since equations (124) and (125) indicate é_satisfactory
agreement between the functions ¢; and 4; in both

cases, 1t is concluded that the functions 9, and F,

afford reasonable approximations to the critical deflec—
tion and 1ift modes and that the computed values of B
are sufficiently. accurate. L

If, in the case a = 1/2, the initial assumption 9,

is taken t0 be proportional to the deflectionr mode 6sf

predicted by the section~force theory (equation (36))
the value

B, = 1.703 (126)

is obtained and is seen t0 be in good agreement with the
value given in equation (122). However, the check cal-
culation in this case gives the result _ .

3,(1) = 0.9309 . (127)
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?

which result, if compared with equation (124), again in-
dicates that the deflection mode ésf doesg not afford so

accurate an approximation to the true deflection mode as
does the function defined by equation (76).

The functions ¥, and 'P, are represented graphi-
cally in comparison with the function 8,0 = Tgp bpre-

dicted by the section-force theory, for the cases e = 1/2
and a = 5/6, in figures 2(a) and 2(b). If equations
(122) and (123) are compared with equations (38) and (37),
it is seen that the aerodynamic span effect is responsible
for increases of about 32 and 39 percent in the values of
the torsional-divergence velocity for the cases a = 1/2
and a = 5/6, respectively.

3. Linear chord, quadratically decreasing stiffress

&* = e* =1 - ay, I" = (1 —'ay)ﬂ .~ The functions K
enéd g in this case are idenpicai with the corresponding
functions in the preceding case and are given in equa-
tions (120) and (121). From equation (76) the function
¥, is determined in the. form

$.(y) = fg-{}l - y) - (1 f_a)a_<§? - i)}- (128)

where' y3 = 1 - ay. The values of the functiong e*, H,
g, and ¥;, as well as the values of F,  determined
from equation (77), are listed at the nine points needed
for the approximate integration in table 3 for the cass

a = 1/2, Equation (92) then determines the first approx-
imagtion’to B, . )

B,° = 5.63%1

(129)
By = 2.374_[
while equation (94) gives . L . )
9,(1) = 0,9953 (130)

Equation (120) indicates that the regults of the first
approximation are sufficlently accurate to justify ter-
minating the process.
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A comparison of “equations (42) and (129) shows that
‘the lifting-line theory predicts a divergence veloeity in
this case which is-about: 17 percent higher than the veloc-
ity predicted by the section—-force theory. The deflec-
tion and 1ift modes .according to the two theorigs are
compared in figure &. - . . S s LD ITTTT

4, Linear ‘chord, quartically decreasing stiffness

E*.é e* = l:-'af,:f*_= (1 - ay){] - The functionsi &, E,

and g are determlned from equations'(76) (91) “and
(87) as follows: N _ VRS A -

O (yil_ >.. -7 (2 )} (131)
- ) <l_y1>} (132)
Yl

ev) = 32 {?133‘5?1 e T (183)

where ¥y, = 1 - ay. The functions needed for the computa-

tion of B are evaluated in table 4 for the case a = 1/2.
From equation (92) thé approximation

L .
Ba z.908

il

(134)

By 1.976

is .obtained, while the check calculation of equation (94)
gives . e . . - . L .

(I B ct sz - - _

%,(1) = 0.9997 . 77177 (185)

and thus permif{ a ﬁermination_pf ﬁhe iﬁérativplpfqgéés.
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The lift and deflection modes ¢, and ¥F, are com-
pared with the corresponding results given by the section-
force theory in figure 45 A comparison of equations (134)
and (47) showe that the aercdynamic span effect is re-
sponsible for an increase of 20 percent in the valuwe of
the torsional-~divergence velocity.. :

For the purpose of further verifying the acg¢uracy of
the present procedure the same case has been analyzed by
two other methods, First, if the initially assumed de-
flection mode is taken as a suitable multiple of the mode
predicted by the section-force theory (equation (47)) the
approximagtion to B 1s obtained as

8,° = 3.8981\ :
_ : (1386)
By

i
l—J
©
B
»

R

while equation (94) gives

3, (1) = 0.9552 (137)

Second, if the assumed deflection mode 1s taken to be the
deflection corresponding to a uniform digtridbution of
twisting moment along the span (eF = consts) rather than
the deflection corresponding to a uniform distribution of
1ift (F = const.) it is found that

2
By, = 3,907
(138)
Bl = 1-976
and
8, (1) = 0.9567 (139)

A comparison of these results with equations (134) and
(136) indicates that the deflection corresponding to a
uniform 11f%t distribution is in closer agreement with the
actual divergence mode than 1s the deflection correspond-
ing to the other assumptions. The remarkable agreement
between the computed values of B shows again that inso-
far as the detsermination of - B 18 concerned the present
procedure is not extremely sensitive to the cholice of the
initially assumed deflection mode.
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5. Linear chornd <c* = g* = l - L—y), discdntinuous

section stiffness (fig. 5). _As a final application of

the metnods of this paper.a symmetrlcal wing is treated
in which the chord tapers linearly to a tip value of one-
half the root value and the section stlffness varies dis-
continuously, as -indicated in figure 5. The evaluat;on“
at nine points of the functions H and 'g'-défiﬁéa'in'
equations (921) and (87) was accomplished by plotting the

and i-3 t0 a large scale on cross-—

1

8‘( ) ° '?-( )

section paper and in each case counting the squares con-
tained between the corresponding curve and the ordinates
at y = 0 and y =y, where y,.= k/8, k= 0,1,...,8.

functions

If equation (76), which here takes the form

d *
— i1
dy [ v

is integrated twice and the conditions ¢,(0) = 8,'(1)
are imposed, the function ¥, can be written in the form -

ii:] = §const.) X <1 - % y) (140)

¥

o - i_ n o+ ,l_ ng . .’..-__.-
4,(3) = (comst.) % 4 4 - an (141)
o ' g I*(n)

Thus the function &, can be conveniently evaluated from

fBoyely)

the function 4 = J,by graphical integration,
= Y - : PoToL
The' constant is determined, as ‘before, so that 61(1)_= 1.

The values of the functions - e*, H, g, and ¥, as ;

well ‘as "'the values of the function ¥, determined from
equation (77) by the procedure of reéference 5, are pre-
sented in table 5. If equation (92) is evaluated by the
method of approximate integration uqed in the precedlng
examples, it is found that. =

2
B = 1,932
. ! W . (142)
‘ B, = 1.599f
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Equativon :(94) then gives
¥,(1) = 0,9979 _ (143)
g0 that, while extreme accuracy should probably not be

expected as regards the 1ift and deflection modes in the
neighborhood of the discontinuities, a satisfactory agree-

ment between the functions ¢, and 8, ig indicated,

According to the section-~force theory the first ap-
proximation %0 the 1lift function F(y) is given by

Foely) = (l - % y> 3, (y) : (144)

in which case equation (92) gives, as a firat approxima-

tion,
3 _
Bsf 1.36;1

1.16%f

Comparison of equationsg (1423) and (145) shows that
the aerocdynamic span effect is responsible in this case
for an increase of about 19 percent in the predicted val-
ue of the divergence velocity. The 1ift and deflection
modes for.the two theories are compared in figure 5,

(145)

Bsf

CONCLUSION

The results of this paper indicate that neglect of
the aerodynamic span effect may lead to an apprecieble
underestimation of the torsional-divergence velocity, the
difference between the values obtained with and without
neglect of this effect amounting to 17 to 40 percent in
the numerical exampleg presented,.

In view of the fact that the cases evaluated copnoern
only wings with a span of about six times the root chord,
it seems desirable to consider a greater variety of wings
and, in particular, to investigate the relationship be-
tween the relative magnitide of the aerodynamic span ef-
fect and the magnitude of thé aspect ratio.

-
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An extension of the present procedure to the anelysis
of antisymmetrical deflection modes, as well as to the
analysis of the elastic deformation of wings before tor-
sicenegl divergence -occurs, can be accomplished without es-
gential difficulty. - : '

Massachusetts Institute of Technology,
Cambridge, Hass., Feb. 1843, .

-APPENDIX
A FTORMULA FOR APPROXIMATE INTEGRATION

If the appfoximate value of the integral

y . _
U/n'f(x) ax e ] (1)

%)

is required, and if the function f(x) is of the form

£(x) = p(x) /1 - 2% (e

where 'p(x) is finite at x = 1, conventional formulas

such as Simpson's rule fail to give accurate results due

to the fact that £(x) has an infinite slope 2% x = 1.

A modification of Simpson's rule which takes this fact

into account is here derived for & nine-point weighting

system. : o T T

With:the notation £, = f(k/8), Simpson's rule gives
for the range 0 < x< 3/4 ' T

3/, o - ) : el
./P £(x)dx zgz{}oi-4f1+ 2fg + 4f, + Bf + 4f_+ f%} (3)
] |

If, in the range 3/4 < x < 1," the function f(x) 1is
approximated by the expression ' o e e e
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flx) ® &y W1 - x+ap (1 -7x) a (1 - x) o (4)
the congtants a,, az, and " az  can be determined so that
equation (4) is a true equality at the ‘points =x = Z/4
and x = 7/8 and so that the derivative of the difference
between the two sides of that eqaation is finlte at x = 1.
It then follows that - .

: o .
ay =42 P(l)
Bp =~ 4fs + 16f, ~ (8. - 2./2) p(1) (5)
B, = 82f, ~64f, + (32 - 164/2) p(1)
J
With the approximation of equation (4)_there follows
1 _ . . e
1 1 1
e F + i 6
ﬂ/p flzxyax =35 82 * g5 82 * 753 & (6)
%,
or
RS R . R -
£x)ax z Lo (£ + a2, + (B2 - 2)p(1)} ] (7)
JP ) 24{:5 7 <2J PRy

Equationg -(3) and (7) can ‘then be combined.to give

g ' a ' ..
.I . . f(x)r
f(x)dx = -}; o, fix )+ (3«/ - 4) — (8)
14P K J 1-x? . -
k=o x=13
where xy = k/8 and 'O is the weighting coefficient
associated with the point x, by Simpson's rule. The

last term in equation (8) is a correction term which takes
into account the fact that £(x) has an infinite deriva-
tive at the point x = 1, - - - % - ' :
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TABLE 1.- DATA FOR UNIFORM WING (c

NACA Technical Note No. 926

b

(a) Pirst Approximation

Lt}

‘H

g .

: 6i‘

¥,

© L7580

.125
.250
.375
.500
.626

+875

-0

L1172
.2188
3047
3750

L4297,

.4688
.4922

.1250
. 2800
.3750
.5000
.6250
.7500
.8750
1.0000

0
- .2344
. 4375

.7500
. 9375

.9844
-1,0000

‘0.2680
3848
.5618

. 5857
.5780

0

.3040-

4779

« 951867

1,000

.5000

B+ ZA,p

=1.,4773

(b) Second Approximatiod

VP

Fa

.125
. 250
L3756
.500Q
625
L7500
.875
1.000

0
. 2229
. 4365
.60B7

. .7649
.8696
.9476
. 9895

1.0000

0.2624
.2984
.3806
L4764

- B533
.B895

.5803 |

.51856
0

(c) Pirst Approximation'with

B +TAg, =1,4802

=

4,

dgf

¥y

4,

¥y

53

Y

.125
. 250
«375
-500
.625
.750
.876
1,000

0

l.

. 3827

83156

1951

5656
7071

3239
9808

0000 1 O

0.2399
.2730
, 3507
4435
,5211
.5622
.D6l4
.50823

0

.2109
4044
.B758
7194
.8306
. 30867
.9478
. 95682

.2201
4320
06009
7508
.8668
.2463
.9892
1.0000

B + SAgpy = 1,4606




TABLE 2.~ DATA FOR RECTANGULAR WING WITH QUADRATICALLY
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TAPERING STIFFNESS (% -

=)

’ 3 .
(a1 =13 (1 -1 y)

43

y' H g . '61 Fl ésf:—‘ :E‘Sf
0 o |0 0 0,2090 0
.125 .1248| .1333 || .1i616| .2376 .1217
. 250 .2484 | ,2857 .3215 | .=Z069 . 2569
.375 .3690| .4615 4776 | .3925 ,4032
.500 .4841 [6667 . 6265 .4685 .5564
.625 .5837 .9091 .7632 | .5163 ,7089
.750 .6800| 1.2000 .8801 | .5290 .8484
.875 .7459 | 1.5656 .9655 | .4910 .9554
1.000 .7726| 2.0000 || 1.0000 1} 0 1.0000
N 1
() I = Io (1 -24Y
= 'R ( G y)
y H g LY F, dgr=Fgsr
) 0 0 o . 0.1425 o)
.125 L1305 ,1395 .0948 .1615 .0610
. 250 .27321 .3158 .1980 | .2110 .1293.
375 L4305 .5455 ;3119 | .2768 .2185
.500 . 6047 8571 .4382 | .3428 . 3307
.625 .7986 | 1.3043 6786 | .3974 .4730.
.750 |- 1.0124| 2.0000 75335 | 14353 L6484
.875 || 1.2348 | 3.2308 .8947 L4342 . .. 8541
1.000 1.%801 | 6.0000 ||1.0000 )0 . 1,0000
B +2Aan =.1..3327
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TABLE 2,.,- DATA FOR LINEARLY TAPERING WING WITH

E

QUADRATICALLY TAPERING STIFFNESS

1 1.\ po
- = I =.1 - L.
°r <1 2 V)’ R (l 5 y) ' 7§

=

£
]

y e* H g 8, ¥, § or For
0 1.0000 | © o) 0 0.1868 0 0
.125 .9375 1248 | 1333 .1833 | .21L5 .1h92 | .1399
«250 8750 .2ugh | 2857 .3571_| .2783 L3094 | .2708
375 | .8125 .3690 | 4615 .5192 | .3490 U731 gLl
.500 . 7500 Jelnt L6667 i L6667 | .3980 6312 | Luy3s
.625 6875 5897 | .9091 .7955 | 4109 L7740 5321
.750 .6250 6800 | 1.2000 |l . .9000 | .3973 .8908 5568
875 || .5625 | .7W59| 1.5556 || .9722| .3715 9704 | .5L58
1.000 5000 «7726 | 20000 |1.0000 |0 - 11,0000 | .5000
B+XAgn=1.,2058
TABLE 4,- DATA FOR LINEARLY TAPERING WING WITH
QUARTICALLY TAPERING STIFFNESS
o . 4 2
rm G e n (o) e t]
Y e* H =4 I ‘.01 Fl ‘asf Eﬂf
0 1.,0000 { O 0 iHa 0.1409 0 0
.125 .9375 13331 . .1k24 [ L1173 L1567 L0826 | .O77L4
250 «8750 28381 .3285 2443 | 2056 .1858 | .1626
<375 .8125 JH533 | L5762 38101 .2691 3066 | .24
.500 » 7500 L6420 | .9136 5259 | 3217 JA579 | L3434
.625 .6875 .8465 | 1.3849 L6754 [ .3L85 b21l | LJhey2
.750 .6250 | 1,0560| 2.0640 .|| .8208 | ,3550 L7891 | .hg32
«875 5625 | 1.2119 3.0791 94291 3491 .9332 | .5249
1.000 »5000 | 1.33331 b.6667 |[1.0000]| 0 1.0000 | .5000
B+ ZAon = 1.1686
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TABLE 5,- DATA FOR LINEARLY TAPERING WING WITH

DISCONTINUOUS STIFFNESS VARIATION

B

- .1 % _ 4
-"'°R<l 2y>’s 3

°]

45

vy e* 4 g 8, F, c*d,
0 1.0000) O 0 0 0,1455 0
.125 .9375 .1172} .1250 .0656| .,16582 . 0615
. 250 .87560 .2188]| .2500 .1200f '.2364 .1050
.375 .8125| 1.0781]1.5000 .5606| .3523 .4555
.500 .7500] 1.,7813]|2,.7500 .9043| ,4463 L6782
. 625 .6875] 1.8435[2.8927 L9333 .4731 .6417
.750 .6250 1,9041;3.0881 .9599| .4352 .5999
.8756 .5625 | 1.9616|3.4061 .9836| .3770 .5533
1.000 .5000| 2.0038}4.3267 | 1.0000}0 .5000

B+ SAgp =1.2400
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